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ABSTRACT

In this paper we derive a method for finding small amplitude high

frequency solutions to hyperbolic systems of quasilinear partial differential

equations. Our solution is the sum of two parts: (i) a superposition of

small amplitude high frequency waves; (ii) a slowly varying 'mean solution'.

Each high frequency wave displays nonlinear distortion of the wave profile and

shocks may form. Shock conditions are derived for conservative systems.

Different high frequency waves do not interact provided the frequencies and

wave numbers of two waves are not linearly related to those of a third. The

mean solution is found by solving a linear partial differential equation.

This method generalizes Whitham's nonlinearization technique [9] for single

waves, to problems where many waves are present. We obtain these results by

generalizing a scheme first proposed by Choquet-Bruhat (1] which employs the

method of multiple st-ales.
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SIGNIFICANCE AND EXPLANATION

Problems involving high frequency waves arise in many applications. For

example they arise in optics (light waves propagating through a medium of

slowly varying refractive index), acoustics (sound waves propagating through

the atmosphere) and oceanography (water waves propagating over a gently

sloping ocean bed). If the waves are sufficiently small in amplitude they

satisfy linear differential equations and there is a powerful theory for

calculating their behaviour called geometrical optics. Larger amplitude waves

may satisfy nonlinear equations, and then they display qualitatively different

effects from linear waves. The most significant effect of nonlinearity is

that waves can form shocks, surfaces across which the wave amplitude changes

sharply. The most familiar example of a shock is the sonic boom generated by

an aircraft in supersonic flight. In this paper we develop a generalization

of geometrical optics to small amplitude nonlinear waves which allows us to

calculate how they propagate, and to predict effects such as the formation of

shocks.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.



CONTENTS

1. Introduction

2. Sumary of Weakly Nonlinear Geometrical Optics

3. Derivation of the Equations

4. Derivation of the Shock Conditions

5. Comparison with the Nonlinearization Technique

6. Comparison with the method of Characteristics

7. Resonance Conditions

8. Multiple Characteristics

Appendix: Weakly Nonlinear Geometrical Acoustics



WEAKLY NONLINEAR HIGH FREQUENCY WAVES

John Hunter

I. Introduction

In this paper we consider waves which satisfy nonlinear hyperbolic

partial differential equations. Work on such waves has been centered on one-

dimensional problems. The problems either involve only two independent

variables, usually time and one space variable, or involve only a single wave

and thus are essentially one-dimensional.

Here we develop a method for problems in any number of dimensions and

with any number of waves present. We call our method weakly nonlinear

geometrical optics, since it reduces to geometrical optics for linear

systems. It applies to small amplitude, high frequency waves which are

solutions of quasi-linear hyperbolic partial differential equations.

We obtain the first term in an asymptotic expansion for such a solution,

which is the sum of two parts: (i) a slowly varying mean solution; and (ii)

the superposition of a number of small amplitude, high frequency waves. The

profile of each high frequency wave in the superposition is distorted by the

nonlinear self-interaction of the wave. This can cause the solution for the

wave to become multivalued. To obtain a single-valued solution we must

introduce discontinuities, and for conservative systems we derive an equal

area rule that allows us to fit shocks into the wave solution.

We show that there is no interaction between different waves in the

superposition provided that (a) the mean solution is correctly chosen; and (b)

a certain resonance condition never holds. The mean solution must be chosen

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS-7927062, Mod. 1.



so that an average of the wave profile is zero. Thus the mean solution is the

average of the first term in the asymptotic expansion. It is found by solving

a linear system of partial differential equations.

Resonance can occur when the frequencies and wave numbers of two waves

are linearly related to those of a third. This threefold resonance is a

consequence of the quadratically nonlinear interactions between the waves, and

a more general form of solution than that considered here must be used if

there is resonance.

The method by which we obtain these results is an extension of one

proposed by Choquet-Bruhat [1], and employs the method of multiple scales. It

gives exactly the same result for a single wave as the nonlinearization

technique proposed by Landau [2] and Whitham (3], and later derived by Varley

and Cumberbatch ([4], t5]) using the method of relatively undistorted waves.

The result that two small amplitude waves do not interact to first order

in the wave amplitude, has been found previously in one dimension by Mortell

and Varley [6] and Seymour and Mortell (7]. The present method generalizes

this result for high frequency waves to any number of dimensions.

An outline of the contents of this paper are as follows. In section 2 we

summarize the results obtained by the method of weakly nonlinear geometrical

optics. The formal derivation of the equations stated in section 2 for the

mean solution and the high frequency waves, is given in section 3. The equal

area rule for fitting shocks into the high frequency waves is derived in

section 4.

In the next two sections we compare our results with previous results.

In section 5 we show that Whitham's nonlinearization technique is a

consequence of the present method. This demonstrates the agreement between

weakly nonlinear geometrical optics, when applied to a single wave, and the
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method of relatively undistorted waves, when expanded for small amplitudes.

Both methods reduce to the nonlinearization technique in the common case of a

single small amplitude wave.

In section 6 we consider time-dependent plane and spherically symmetric

waves in gas dynamics. The equations governing such waves involve only two

independent variables and therefore can be treated using the method of

characteristics. We verify the results of weakly nonlinear geometrical

* acoustics in this case by showing that they also follow from the method of

characteristics. In particular we see that two waves do not interact if the

mean solution is chosen as described above.

In section 7 we discuss conditions under which resonance can occur,

giving necessary and sufficient conditions for it to happen. This gives us

the conditions under which a solution consisting of the superposition of non-

interacting waves is applicable.

In section 8 we consider systems with multiple characteristics and show

how the results above are modified, assuming that the multiplicity of

characteristics does not change.

Finally in the appendix we apply the method to the gas dynamics

equations. The result is a theory of weakly nonlinear geometrical

acoustics. Applications of the theory will be described in a future paper,

I wish to thank Professor J. B. Keller for suggesting this problem to me

and for many helpful discussions during my work on it. This work was

performed while the author was at Stanford University and I am happy to

acknowledge their support.
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2. Summary of Weakly Nonlinear Geometrical Optics

We consider a strictly hyperbolic system of quasi-linear first order

partial differential equations

n

(2.1)=I A M)(xu)u + B(x,u) - 0
x
i

In (2.1) x = (x1 ...,xn) is an n-vector, B and u = (ul,....,uN) are N-

vectors and each A(') is an N x N matrix. Usually one of the independent

variables xi is time. We assume that A(i) and B are continuously

differentiable with respect to u.

The weakly nonlinear geometrical optics solution to (2.1) is

m

(2-2) u - u(x,e) + I a(X,( (x)/)s(J (x) + 0(C) (as + 0)

The derivation of (2.2) is given in section 3. Here we explain what the

various functions appearing in (2.2) are and how they are determined.

Equation (2.2) represents u as the sume of a mean solution u and a

superposition of m small amplitude high frequency waves a()R (j ). The

small parameter C is introduced into the problem through initial and

boundary conditions. It is the ratio of a typical dimensioned wave amplitude

relative to a parameter with the same dimensions appearing in the problem. It

is also the ratio of a typical wavelength relative to the length scale over

which a wave is modulated. We assume that dimensionless variables can be

chosen in the original problem leading to (2.1) so that both the wave

amplitude and the wavelength are 0(6).

Now we describe how to calculate the functions in (2.2). The mean

solution u satisfies (2.1) to 0(C). For ; regular in C we expand it as

(2.3) u - u( )(x) + E (x) + 0(C
2 )

We use (2.3) in (2.1), expand A(i) and B in Taylor series about u - u( 0 ),
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and formally equate to zero the coefficients of c and C1 It follows

that u(0 ) is a solution of (2.1), and ;(x) satisfies the system of

equations that results from linearizing (2.1) about u - u(0 )•

n n
(2.4) AW (xu (0)); + A M)(x,ul0);uM + B (x,u(0)); - 0

i N U xi  u
N

The notation Auv means A u Vj * We suppose u 0;(x) is a known
j=l U

function, and then ;(x) is found from (2.4).

The sum of terms a(J)R (J ) in (2.2) is a superposition of high frequency

waves. The 1th wave depends on the rapidly varying phase * (x)/C, and the

wave is proportional to the vector R(1 )(x) determined by the phase function

The scalar a(J (x, ((x)/) is the amplitude of the wave (if

is normalized to unit length).

The mean of the wave amplitude over the rapidly varying phase is required

to be zero. That is

(2.5) lim (_ fT a(J)(x,e)d8) = 0
T+1WT

In (2.5) the mean is taken over [0,0.), but it could equally well be taken

over any other semi-infinite or infinite interval.

The functions (J), RMj ) and a(j ) are determined as follows. Each

phase function satisfies an eiconal equation

(2.6) det( n 1 Ai = .

xi

Notice that (2.6) really is an equation for f(J) because A(i)(x,u) is

evaluated at u = u(0)(x).

Equation (2.6) is a first order partial differential equation for a

scalar. Therefore it can be written as a system of ordinary differential

equations along a set of curves in R. These curves are the rays or

bicharacteristics of (2.1) which correspond to the solution u u(0 ) and the
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phase function *(i). We introduce ray coordinates (s.,oj,,..., 8j,n_1)

where s.(x) is a function of arclength along a ray and 8.(x) =

(Oj,,...,j,n1 ) is constant on each ray.

Then [8] the rays are solutions of

(2.7) L WJ(x)A Mi(x,u (0))R ( x) (i = 1,...,n)
ds1 Ij

In (2.7) L(j ) and R(i)  (the vector appearing in (2.2)) are the left and

right null vectors of the matrix

n

(2.8) A
xi=X

In (2.8), and in the future, we omit showing explicitly that A(i) and B

are evaluated at u = u(0 ) . Since (2.1) is strictly hyperbolic L(j ) and

R(j ) are uniquely determined up to a scalar multiple.

The amplitude of the jth wave is given by

(2.9) a(j )  = F.(8.,Cj/E)Ej(silo

In (2.9) F. is an arbitrary function with zero mean, which describes the

wave profile by its dependence on j/C. The factor E. in (2.9) describes

the modulation of the wave amplitude due to inhomogeneities and changes in the

ray geometry. It is

(2.10) E. = exp{-f L(J)A(i)R(J)u(0) + L(J)B R(J]ds.)
i0 I xi xi u I

The integral in (2.10) is taken with respect to sj along a ray 8 =

constant. The integral is taken from an arbitrary point sj = s (8 ) on the

ray.

The wavefronts of (2.9) are given by Cj M constant. The modified phase

function j(x,e) is defined implicitly by

(2.11) - (,/C)I - EK
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In (2.11) I(sj,.) and K (s.,B.) are given by

= n )~ (J 0 j ) J Jn sj

1j = SI Lljll)3Ai3R(J)RlJ)Eds.
3 i=1 0 i1J

(2.12)

a. s L(j)(j)A(i);R(J)ds
i-1 0 1

The integrals in (2.12) are taken along a ray as in (2.10).

The expression (2.11) for j involves only Fj and does not depend

on Fk for any k ' J. The different high frequency waves are completely

uncoupled.

If (2.1) is linear then J ) and the wavefronts are given by
j

*(J) = constant. Equation (2.11) expresses the fact that the wavefronts

constant differ from level surfaces of #(J) because (2.1) isJ

nonlinear. The term CF I in (2.11) gives the correction to the wavefronts

because of the waves nonlinear self-interaction. The term CK. gives the3

effect of the departure of the mean solution u(x,e) from u(0)(x).

Although both the correction terms in (2.11) are small in magnitude the

nonlinear case is qualitatively different from the linear one. In the

nonlinear case (2.11) defines Cj(x,C) implicitly, and because of this C

can become a multivalued function of x. Then a discontinuity or shock must

be introduced into the solution for a(J ) in order to make a(J ) a single-

valued function of x.

For a conservative system such a shock satisfies an equal area rule.

Suppose that the ray 8. = constant meets a shock in the jth wave at

s. = f(a ). Denote the two wavefronts meeting the shock at this point by

1= Z1 (j,) and z 2 (Oj,). Then zI and z2  are related by the

equal area rule

-7-



(2.13) =2 1 -(z2-z){F F.z( ,z2 /C) .

We also have from (2.11) and the definition of zI and z2  that

(2.14) zk = #(J)- EF1  ,zkft)I --K (k = 1,2)

All functions of x in (2.14) are evaluated at s. f(B.). Equations (2.13)J

and (2.14) provide three equations for the unknown functions Zl, z2  and

f. These equations are essentially the usual equations for weak one-

dimensional shocks as described in (9].

Now we briefly describe how to use these results to solve an initial-

boundary value problem. Suppose we are given boundary values for a small

amplitude high frequency perturbation about a solution u(0)(x) of (2.1)

which is assumed known. For example in gas dynamics u(0 ) might correspond

to gas at rest with constant density.

We choose dimensionless variables in which the perturbation amplitude is

0(C) and the frequency is 0(1/E). Then v(x) is found by solving (2.4), a

linear system of partial differential equations, subject to boundary values

obtained by taking the mean of the perturbation's boundary values over the

fast phase variables. The infinite or semi-infinite interval over which each

fast variable is averaged may be choosen so as to make the boundary values for

v as simple as possible.

Next the m phase functions ()x) are found by solving (2.6), which

can be done by integrating a system of ordinary differential equations.

Initial conditions for #(J) are chosen so that O(j) takes the same value

on the boundary as the appropriate rapidly varying function on which the

boundary values depend. Once #(J) is known it is an algebraic problem to

calculate the corresponding null vector R(j )•
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The amplitude a(i) is given by (2.9) and the function F. is chosen to

make (2.2) agree with the boundary conditions. The function E is given in

(2.10) and the modified phase variable C is found from (2.11). If shocks

form they are fitted into the solution using (2.13) and (2.14). This

completes the solution of the boundary value problem. As an example of this

procedure, a general initial value problem for the unsteady one dimensional

gas dynamics equations is solved in section 6.

There are two limitations on the use of (2.2). Firstly the results above

thapply to the nonresonant case. Resonant interaction between the j wave and

the kth wave (j #k) can occur if there are nonzero scalars c1 (x) and

ck(x) such that the vector p(x) defined by

(2.15) p = C V (  + ckV (k

satisfies the eiconal equation

n
(2.16) det{ I piA(i} 0

i=I1

The results above apply provided (2.15) and (2.16) do not hold for any

distinct j and k at any x. Included in this condition is the case

p = 0, when Vf(j) and V,(k) are parallel. This condition is a sufficient

condition for resonance not to occur. A necessary and sufficient condition is

derived in section 7.

A second limitation on the use of (2.2) is that in general the expansion

will break down for large times of 0(1/W). One source of this nonuniformity

is the expansion (2.3) of u. Another is the cumulative effect of lower order

(cubic) nonlinearities which we expect to become significant after times of

0(1/6). If necessary one could extend the validity of (2.2) to larger times

by introducing further multiple scales X E Lx.
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When (2.1) is linear the equations summarized above reduce to those of

geometrical optics. We finish this section by stating the major effects

introduced by the nonlinearity of (2.1). There are three. Firstly for there

to be no interaction between different waves the mean wave profile (2.5) must

be zero. Secondly the wavefronts z. - constant are distorted by the
I

nonlinearity according to (2.11), and this can cause shocks to form. Lastly

there is the possibility of resonant interactions between waves when (2.14)

holds.
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3. Derivation of the Equations

In this section we derive the equations for ;(x) and a(i) stated in

section 2. Following Choquet-Bruhat [1] we shall seek small amplitude, high

frequency solutions to (2.1) of the form

(3.1) u - u ()(x) + Cv(x,B,£)

In (3.1) u(O) is a solution of (2.1), as before, and 6 - 1 ...,B) where

- '(J)(x)/C. The v and *(J) are to be determined. The difference

between (3.1) and the form of v used by Choquet-Bruhat is that in (3.1) v

depends on m fast variables B instead of just one. This allows the

presence of many waves, permitting us to deal with the interactions between

them.

We shall use the method of multiple scales, in which x and 6 are

treated as independent variables, to obtain an asymptotic expansion for v as

9 + 0. We shall assume that v, vx, and v. are bounded functions of x

and e and that v(x,O,£) has an asymptotic expansion as + * 0 of the form

(3.2) v(x,ge£) M v()(xe) + ev(1 )(x,8) + 0(£2)

We now use (3.2) in (3.1) and substitute the result into (2.1). Then we

expand A(i)(x,u) and B(x,u) in Taylor series in powers of C about

u M u(0 ), and replace the partial derivative a by

axx £

axi C j=1 xi  ae •

Equating to zero the coefficients of C0 and C1  in the resulting formula

gives the following equations:

m n

(3.3) x (i)A(i)v()
ji i 0
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J=1 i=1 Xi u Vs U
m n

(n) (i) (0) (0) (0
+ j j A V ye +B

In (3.3) and (3.4) A AM and B are all evaluated at u =

For a single wave propagating along the j-th characteristic only one term

in the sum over j in (3.3) appears, and therefore it is zero. Motivated by

the idea of extending the superposition of single waves from the linear to the

weakly nonlinear case, we shall look for solutions such that each term in the

sum over j in (3.3) vanishes separately. Therefore we suppose that

n

i. xi (xu )v = 0 for j = 1,...,m

In order for vi0) to be non-zero the matrix in (3.5) must be

vJJ
singular. This gives the eiconal equation (26) for #(Jlx). Also v(O )

must be parallel to the right null vector R(J ) of (2.8). Therefore we seek

a solution for v10 1 of the form

(3.6) v10 ) - ;(x) + n a(J)(x, 0)R(j)(x)
j=1

Clearly (3.6) satisfies (3.5) for an arbitrary vector function ;(x) and

arbitrary scalar functions a ((Jx, ). It is not the most general form of

the solution to (3.5), but we shall see that a solution of this form can be

found in the absence of resonance.

Without any loss of generality we take ;(x) in (3.6) equal to the mean

of v(0 )(x,B) with respect to e. The mean of v(0 ) is defined because

v(0 1 is a bounded function of 8 at each x. Then the mean of each

a (J)(x e) with respect to e is zero. Thus:
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(X) li m fl ... f 0 v (x,8)d81 ***d}
T+4 Tm 0m

(3.7)
li fT a(j)(e)d 0uin {¥ fo a(x 8 )d8 I = o.

The functions ; and a (j ) will be found from solvability conditions for

(3.4).

The average of the derivative of a bounded function is zero. If the

expansion (3.2) is uniformly valid for all x and 0, v(0 ) and v(1) must

be bounded functions of x and 6. We use (3.6) in (3.4) and average the

resulting equation over 8 ,...,m . The average of the left hand side is zero

and we obtain equation (2.4) for the mean v(x).

We obtain equations for the m scalars a(J)(x,.) by using (3.6) in

(3.4), averaging the result over all 0k  for k # j, and then taking the

scalar product with LM , the left null vector of (2.8). The left hand side

of (3.4) is annihilated and we obtain an equation for a(j ) . In this equation

we recognize the sum of partial derivatives with respect to the xi as a

directional derivative along the jth set of rays (2.7). We rewrite the sum of

these derivatives as a derivative with respect to sj and find that a(j )

satisfies

a + ( A  s R R a  + L ( A (i )
y
R (j ) a

(3.8) Sj

+ L a =0

In (3.B)

(3.9) Qli) = Z (A(i)Rli) + Ai)R)u + B R
iI xi  u xi  U

The coefficient of a(J )  in (3.8) is the propagation speed of disturbances in6

the (s,0S) plane.
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The equations for the scalars a(i) are uncoupled. No a(k ) with

k j appears in (3.8). Equation (3.8) is a nonlinear equation for a( )  in

two independent variables. It reduces to the transport equation of (linear)
a(i)

geometrical optics if equation (2.1) is linear, when the coefficient of a.
j

in (3.8) is zero.

If the resonance condition (2.4) holds then there is a stronger

solvability condition than (3.8) for (3.4) and it is not always possible to

find a solution of the form (3.6) for v This is discussed further in

section 7. Here we assume that there is no resonance.

Then a(1 )  satisfies (3.8) which we can integrate by introducing

characteristics. Let
M~jj) = i1n L(()i)R(J)R(J)

M Xi *s P IL A uR R

L(j)()(i) R(j)
(3.10) N.(s, ) = L xi yu

j j jS u

Then (3.8) is

(3.11) a (a + + Nj )j + Pa( 0sj

We may write (3.11) as
d alj) Ii)

(3.12) = a-Pa

on the characteristic curves

(3.13) d8 = M a ) + N
ds j j

The solution to (3.12) is

(3.14) a~i )  - j(0J, )Ej I(sit )

In (3.14) F is an arbitrary function depending on B and a scalar

which parametrizes the set of characteristic curves (3.13). The function

EK is defined by (2.10).

-14-
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We use (3.14) in (3.13) and integrate keeping constant. The result

is

(3.15) e j fo M 1 0 1(s,)z (8,0 )ds + f0 N (s0)do

+ S JO,)-

In (3.15) Kj is an arbitrary function which determines how t parametrizes

the curves (3.13). Usually we take S (0J,} = C.

The final step in the method of multiple scales is to let

j- ()(x)/e. We use this in (3.15) and also let C - %I/ in (3.14) and

(3.15). Then we obtain (2.9) from (3.14) and (2.11) from (3.15) after

multiplying through by C.

The only equation that we still have to derive is the equal area rule

(2.13) and we shall do this in the next section.
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4. Derivation of the Shock Conditions

In this section we suppose that (2.1) comes from a conservation law and

derive the equal area rule (2.13) for a (i) from the Rankine-Hugoniot shock

conditions for (2.1).

Therefore suppose that (2.1) can be written in conservation form

(4.1) {F M (xU) + H(x,u) - 0
i-1

In ( .1) F(i) and H are N-vectors such that

F Mi(x,u) - A Cilx,u)
u

(4.2)

H(x,u) + Fi)(x,u) B(x,u)
xi

The FMC) correspond to conserved quantities, and H is the source density

of these quantities.

The generalized Rakine-Hugoniot shock conditions for (4.1) which hold

across a shock front, are

n F

(4.3) (i)n, = 0
i-1

In (4.3) [F(i)] denotes the change in Fi) across the shock front, and

n is the normal to the shock.

We consider the jth wave with amplitude a(i). Linear theory predicts

that a shock in this wave travels along the linear characteristics (J)(x) f

constant. This should be the zeroth order result for weakly nonlinear

waves. We suppose that the position of a shock in the j-th wave is given by

(4.4) h(x,Oc) - 0 .

From the linear theory h(x,8;O) should be a function of x and 0. alone,

since then the shock position is

-16-



( x) -constant + 0(E)

Therefore we seek a power series expansion of (4.4) in the form

(4.5) h(x,OgC) - h O(x,e .) + £h C)x,G) + O(C2

We assume that h() h~l) and their derivatives are bounded functions of

x and e.

The normal n to the shock front is proportional to Vh and its

component nj is proportional to

(4.6) h O- *h( 6  + h(O +m (k)1)+OC
x xi Xi k-1 i k

We use (3.1) and expand [F(i)] in a Taylor series in powers of e about

u M u() We asue ( is continuous across the shock. Using (4.2) this

gives

(4.7) (F (1- 9A! (x,uO)([VJ + _IC2A i(x,u O) +0(C)3

we us.:- 14.6) and (4.7) in (4.3) and equate the coefficients of C 0 and

1 to zero. This gives

(0) n MjCi (0)
(4.8) h8 j I *(JA [V I 1=0

(0) n C() Mi (1) n (0)~ (0A)v
(4.9) h I * A IV I ( h( f(I)ACi)[ (0 (0

ji=i xi j i i x

n (0) Mi (0)
+ h A IVJI

i i x

+ nC hl) 4(k) ACi)[ (0)

i=1lk=l k i

Equation (4.8) is satisfied if (v(0)] is proportional to RCi). Therefore

we suppose that ; and a~k)CkEj) are continuous across the shock. Then

from (3.6)

(0) (J) (1)
(4.10) IV I = [a JR
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Now we use (3.6) and (4.10) in (4.9). We average the resulting equation

over all ek# k 0 j, and take the scalar product with L(j ). The result is

(411 n [a() IL(J) ACiR) h (0) 4 1 (j )2 L(j)O(j)ACi)RCi)R(j)(4.11) [al lLl AliR(Jh(0 +- ((aljI]LjIlJAliR jRl
x 2 xi u

+ [a( )L RA( ) + R(J)v)h(o) 0
xi  u

In (4.11) the sum of partial derivatives with respect to xi can be written,

as before, as a derivative with respect to sj. Then we divide (4.11) through

by [a(j )] to obtain:

(4.12) L + (L(J),()A(i)R(J)R(J)<a ()>(41) haj += l,1 x i  u

+1 L(J)( A (;R~i + R(j);) h(O) 02 x, u e0 1 ) .

In (4.12) we have written [a(J)2]/2[a(J)] as <a(J)> where

(4.13) <a(i)> E {a( + a (J)
2 + -

In (4.13) a(J) and a (i) are the limiting values of a (1 ) on the two sides

of the shock, and <a(i)> is their average.

We claim that for systems derived from a conservation law, if S and

T are any N-vectors,

(4.14) A ST=A TSu u

Proof. From (4.2)

A(i)jk auk

Therefore
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m m 2 ( )
A ST - k

u kil I1 U.aut

m m a 2 i )

Mk l I l I ul TkSL

A(i) TS . U
u

We use (4.14), with S R( J ) and T - v, in (4.12) and divide through by

he to obtain the following expression for -h(0)ihn0)spe~ ~ expes on.~ ej vhich is the speed

of the shock in the (site) plane:

(0) (0) (J) (J) (i) (J) (J) (J)
-h /h 1 (L A R R <a >

(4.15) 
1 j

+ (J) (J) A()(j)
x i  u

Comparing equation (4.15) with (3.8), we see (4.15) expresses the well known

fact that the speed of a weak shock is the average of the propagation speeds

on the two sides of the shock. The shock problem (3.11) and (4.15) always

involves only two independent variables, sj and 8O, however many

independent variables there are in (2.1), and the equal area rule (2.13) then

follows from (4.15) exactly as described in 191.

-19-



5. Comparison with the Nonlinearization Technique

Laudau [2] and Whitham [3] independently proposed a technique for

nonlinearizing geometrical optics. In the technique, the deviation of the

rays from their linear position is neglected, but in treating the propagation

of disturbances along the rays the first order nonlinear correction to the

propagation speed is taken into account.

We consider a single wave propagating on one family of characteristics

with amplitude 0. Whitham describes the nonlinearization technique, as

follows [9].

Geometrical optics provides a ray geometry and gives along each ray

(5.1) a - f(+)E(s)

In (5.1), s is arclength measured along the ray. The function E(s) gives

the wave amplitude, f(#) gives the wave profile, and *(s) is the phase

defined by

(5.2) t - fo o'

In (5.2), c0(s) is the velocity at which disturbances are propagated along

the ray according to linear theory.

* The nonlinear velocity on the ray c(s,ft) is expanded for small a as

(5.3) c(s,G) - c 0 (s) + c1 (s)d + O(a 2

Then the result of nonlinearizing (5.1) is

(5.4) a - f(T)E(s)

In (5.4), the nonlinearized characteristic variable T is defined implicitly

by

(5.5) t- cT _
0 c 0 f(T) 02

We show that (5.4) and (5.5) follow from weakly nonlinear geometrical

optics. Let the wave amplitude be ca. Then a satisfies equation (3.11).
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That is

(5.6) as + (M(s)a + N(s)}a0 + P(s)a = 0

In (5.6), M(s), N(s) and P(s) are given by (3.10). Also 6 = */c, where

0 is a solution to the eiconal equation (2.6). We may take * to be given

by (5.2), provided the matrices A(i) are independent of t.

Suppose we linearize (2.1) about u = u(0 ) and use linear geometrical

optics. The transport equation is obtained by dropping the terms in (5.6)

proportional to the square of the wave amplitude. That is we drop M(s)aa6,

and N(s)a8  since N(s) is proportional to the mean v(x).

Thus the equation for a obtained by linear theory is

(5.7) as + P(s)a = 0

The solution to (5.7) is

(5.8) a = F(e)E(s)

In (5.8), F(O) is an arbitrary function and E(s) is given by (2.10).

Let us compare (5.8) with the solution according to the weakly nonlinear

theory. We write (5.6) as
da

(5.9) 7- + P(s)a = 0

on

d6
(5.10) -- = M(s)a + N(s)

The solution to (5.9) is

(5.11) a - F()E(s)

We use (5.11) in (5.10) and integrate taking our constant of integration to be

F. Then we let e = f/, use (5.2) and multiply through by E. In this way

we find that

(5.12) t f, ds' . C+ CFC s ~'Es~s(5.12) t - 0 c 0(s') 0Ms'Es)s

+ C f: N(s')ds'
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We see from the weakly nonlinear solution (5.11) and (5.12) that the

amplitude a has the same form as in the linear theory, but the

characteristic variable t is constant along characteristics (5.12)

determined using nonlinear theory. This is just what is supposed in the

nonlinearization technique.

When N(s) = 0, (5.4) and (5.5) agree exactly with (5.11) and (5.12) if

we let T = e and f(T) = CF(T/6), provided

-2
(5.13) M(s) = -c (s)c (s)1 0

We show that (5.13) is the case.

Suppose u satisfies

(5.14) ut + A M)(x,u)u + B(x,u) 0
t X.

The eiconal equation is

n 
U

(5.15) det{OtI + X 0 A i)(xu)) = 0
i=1 xi

The phase speed c(x,u) equals -0t /IVO, and from (5.15) satisfies
n

(5.16) det{c(u)I - n A(i)u)} = 0
i=I1

The speed c also depends on the direction of the normal to the

characteristic surface, n = - T we omit showing the dependence of c

and A(i) on x in (5.16).

Let L(u) and R(u) be the left and right null vectors of
n

C(u)I - LA (i) ) Then
(517) n iA(i)(u)R(u) = c(u)R(u)

i=I

We expand about u = 0 (there is no loss in generality in taking u(0) = 0):
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cu c 0  cu+0u

R(u) = R + R u + 0(u2)
~U

L(u) 
= L + Luu + O(u2

n n n

n ( iA l (u)= I.A ) + 1i )uu +  1 2)
1= 1=1 1i=(1

On the right hand side R, L, AM and their derivatives are evaluated at

u = 0.

We use (5.18) in (5.17) and equate coefficients of powers of u. Then

(5.19) n n.A = C0R11=1 1 = 0

(5.20) n (i) - = - 1 n. M - C I)R u

i u Cu 1 0
i=1 i=1

n

From (5.19), R is the right null vector of n riA - c01.
i-I

Similarly L is the left null vector. Then we take the scalar produce to

(5.20) with L and solve the resulting equation for cuu. We find

n M

I 'i Lu uR
(5.21) c u =

u LR

To find the velocity along the linear rays, we rAke ni = x/iVf in
1 X

(5.21) where * is given by (5.2). Then since co = -ft/IV*I and t= 1.

(5.22) n. = -c f

Next the derivative with respect to s in (5.6) is taken along the rays

(5.23) t d A(i)R

ds dsx' .

We differentiate (5.2) with respect to s, and use d= 0, since f isds

constant on the rays. The result is

(5.24) dt -1
(T4 = CO
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Therefore from (5.23) and (5.24)

(5.25) 
LRc 0

(This is the normalization of L and R required so that the parameter s

is arclength.)

We use (5.22) and (5.25) in (5.2). Then

2 (i)(5.26) cu=-C 0 A uR
i=1I

Finally we let u QR in (5.26), and use the result in (5.18). Then

- 2 2
(5.27) c(u) = c- c M(s) + O(

nM

In (5.27), we have used (3.10) to write x IA u(RR = M(s). Now, c was

expanded in the nonlinearization technique as (5.3). We see that (5.13)

follows from (5.3) and (5.27). This shows that for weak waves the

nonlinearization technique follows from weakly nonlinear geometrical optics,

when we apply it to single waves (N = 0).
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6. Comparison with the Method of Characteristics

Systems of hyperbolic equations in two independent and two dependent

variables can be solved by introducing characteristic coordinates [10]. In

this section we show that the results calculated using characteristic

coordinates for the one dimensional gas dynamics equations agree to 0(C)

with those calculated using weakly nonlinear geometrical acoustics.

The gas dynamics equations for plane (N = 0) axisymmetric (N = 1),

and spherically symmetric (N = 2) flows are

c + uc + c(u + N 0

x 2 x x

(6.1)
2

U + U -+ - cc = 0
K Y-1 x

In (6.1) u is the gas velocity and c is the local sound speed. To be

definite we shall consider an initial value problem for (6.1), and take as

initial values

c(x,t=0) = C0 + Cc 0 g(x,xf/) + 0(C
2 )

(6.2)

u(x,t=0) = cc0f(x,x/C) + 0(e
2

In (6.2) f(x,O) and g(x,B) are arbitrary continuously differentiable,

bounded functions.

Here we shall solve (6.1) and (6.2) for plane and spherical flows. The

results for axisymmetric flows are entirely analogous to those for spherical

flows, although the formulae are more complicated. The details are given in

[11].

We shall solve (6.1) and (6.2), first by weakly nonlinear geometrical

acoustics and second using characteristic coordinates. Then we shall show

that the two solutions agree.
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To solve (6.1) and (6.2) by weakly nonlinear geometrical acoustics we

seek a solution of the form (A.16) with c0 (x,t) = co  and U(x,t) = 0. In

this one-dimensional problem there are only sound waves. The phase functions

(J) (x,t) satisfy (A.7) which is

(6.3) (j))2 _ c2 ( )) = 0

We want the fast variables *(J)/C in (A.16) to equal the fast variable x/C

appearing in (6.2) at t = 0. Therefore

(6.4) (J) (x,t=0) x

There are two solutions, *(J) - *(±), to (6.3) and (6.4):

(6.5) *(±)(x,t) x + c t

From (A.18) the corresponding null vectors are

(6.6) R (± c

where we have chosen the arbitrary scalar ) in (A.18) to be

(6.7) X = *2c 0/(Y-1)

Using (6.5) and (6.6) in (A.16) we have

(6.8) + (x,t= + a(+) x-t1[: [0 c :: %a- c.,t, (+)(1xtoQ2)[

S2/(y-1
fu

+ cc a ()x,t,---o-) L- 1 +0O(C)2

The means c and u satisfy (A.17) with U = 0

c~ +~--c(u + N-)=t 2 0 __ o( x + )

(6.9)

+ 2 c =0

y-1 ox

Initial conditions for (6.9) are found by averaging the initial conditions

(6.2) for (6.1):
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c(xt=) = g(x)
(6.10)

;(x,t=0) = i(x)

In (6.10) we have defined

(6.11) i(x) - im [- f f(x,S)dB), g(x) = li f! g(x,O)dB)
TT+O

For N = 0 the solution to (6.9) and (6.10) is

C = p(X-C0t) + q0(x+c0t)

(6.12)

2 {GolX-Cot) _ qo(x+cot))

where

p,(x) 0 (1-O f(x) + g(x) ,

0 2 2
(6.13)

q W - {-( 11)f (x) + g(x) .

For N = 2 the solution to (6.9) and (6.10) is (9]

_ 2 p2(X-C0 t) + q2(x+c0t)

(6.14)
C 2 p2(x-ct) - q2 (x+cot) P (X-Cot) - Q2 (x+cot)

where

= W 0 - xi(x) +L1 (x')dx- + xg-(x)}

(6.15)
2(x) d ) = Y--)x(x) - ('-Y) fXi(x')dx' + x;(x))

q Q2(x) =- -(I-f2 2 x)

Now we calculate a Ray coordinates (s ,Bt) corresponding to

* are

(6.16) s± x t C0 t X C0t
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With ray coordinates (6.16) we must take 4i in (A.8) to be
-2/

(6.17) 1 I -c2 /2

From (6.5) we have

(±) 2.*(±) 2
(6.18) - c = -Nc /x

tt 0 0

We use (6.17) and (6.18) in (A.10) then integrate with respect to

t = x ± c0t along the ray 08 = x C 0 t = constant. This gives

(6.19) E x-N / 2

Equation (6.19) is the usual result of linear geometrical acoustics: the

cross-sectional area of a ray tube increases like xN, so the wave amplitude

decays like x-N/2 in order that energy (which is proportional to the

amplitude squared) is conserved along the ray tube.

We use (6.19) in (2.9) and obtain

() (N) - _/(6.20) a F (x + c t, /c)X-N/2•

(N)The functions F are found from the initial conditions. The fast variable
!±

/t in (6.20) should equal the fast variable x/C in (6.2) at t = 0.

Therefore

(6.21) ±(x,tf0,C) f x

Then we use (6.20) in (6.8), substitute the result into (6.2), use (6.21), and

(N)
solve for F This gives

(N) N/2 'V-I 2N/2

F+- (xF/e) = x - (f(x,C/c) - flx)} +--- {g(x,?lt) - g(x)}
+ 42

(6.22)
N/2

F)(x,N/)_= x /2 - f(x,/C) - (x) + {g(x,/)
(N) /E -x 2fXCC {g iw) + g(x)1

We use (6.5), (6.7), (6.16), (6.17) and (6.19) in (A.11) and integrate.

To satisfy (6.21) we take s(B ) = B so that = = x at t = 0,
0±

when s = , . Thus we find
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(6.23) 7(-) -t --FN) (N) tt
1 F,± (X+CotC~k/C)h, 2c0X-

In (6.23)
(0)
± = c 0 t

(6.24) h(2) =logj x

The integral of c and u in (6.23) is taken with respect to s keeping

t constant.

This completes the solution of (6.1) and (6.2) by the method of weakly

nonlinear geometrical acoustics. The solution is given by (6.8). In (6.8)

c and u are given by (6.12) and (6.13) (N-0) or (6.14) and (6.15) (N=2).

(±)
The amplitudes a are given by (6.20) and (6.22) - (6.24).

Now we solve the same problem using characteristic coordinates. When

written with respect to characteristic coordinates A and B (6.1) become

(8]

2 Nuc- -u -tA =0 , x (u-c)t A
'(-1 IA A +x tA = A =(ctA

(6.25)
2Nu

-2 Nu Ct = 0 , xB = (u+c)tBY cB +UB + xtBBB

Without any loss of generality we can impose that A = B = x at t = 0. Then

from (6.2) the initial conditions for (6.25) are

c(A,B=A) - c0 + cc0g(A,A/E) + 0(E
2 2 x(A,B=A) = A

(6.26)

u(AB=A) = Cc0f(A,A/C) + 0(E
2 ) , t(A,B=A) = 0

We shall solve (6.25) and (6.26) by seeking a generalized asymptotic

expansion for c, u, x and t of the form
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c = C o + CC (AB,C) + 0(C 2

u = Cu (A,B,L) + 0(c
2) ,

(6.27) x = X(0) (A,Bc) + CX (1)AB,) + 0(C2

t = t(0)(A,B,c) + ct( )(A,B,c) + 0(c
2)

We use (6.27) in (6.25) and (6.26), and equate explicit powers of C. From

the coefficients of E we find that

XA + C tA0  =0 ,x (A,BA) -A

(6.28)
(0) ( (0) 0 t(0)(A,B=A} =
B  COB

The solution to (6.28) is

(0) 1= (A+B)

(6.29)
(0) 1Ct0 = (B-A)

Equating the coefficients of C and using (6.29) we find that u(I )

and c(l) satisfy

2 (1) () U(1) (1)

2 cA UA Nu- 0 , C (A,B=A,C) c0(g(A,A/E)Y-TCA A A+B-
(6.30)

2 (1) (1) + Nu (1 )  (1) = c f(AA/c)cE  + + u - 0 U ) (A,B=Ac) = cfAA

Y-1 B B A+B 0

Also x(I ) and t( I) satisfy

x +c (1) = {-c(1) + u 1/2c x(1) (A,B=A,) = 0
AA 0'

(6.31)
x( ) -ct ( ) ={c(1 ) + u }/2c0 t(1)(A,B=A,C) = 0
B 0 B

Equations (6.30) have the same form as the linearized gas dynamics

equations, so we can write down their solution. For plane flows (N=0) the

solution to (6.30) is
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c((A,B,E) = p0 (A,A/e) + q0(B,B/E)

(6.32)

(A,B,E) = 2 {p0 (AA/E) - q0 (BB/E) ,

where

p(AA/C) =0 {Y_ f(A,A/E) + g(A,A/C))

(6.33)

coF - {-(- -)f(B,B/E) + g(B,B/e))

For spherically symmetric flows (N=2) the solution to (6.30) is

(1)

c (A,BC) = (p2 (A,A/C,C) + q2 (B,B/C,C)l

(6.34) (1)2 2

u (1)(A,B,) = _I[-(P 2 (A,A/C1,) - q2 (B,B/,C)) -

- 4 (P2 (Ac) - Q2 (B,C))}

(A+B)2

In (6.34)
d CoY1

p2 AA/C, = P2 (Ale) 1 2A(A,A/)

+ -1._ A f(A',A'/C)dA' + Ag(A,A/C)}

(6.35)

q2 (BB/e,E) = Q2 = - {C)-I)Bf(BB/E)
2 dB 22 2

-1 B f(B',B'/E)dB' + Bg(B,B/C)}

We integrate (6.31) to find x (1 ) and t( 1 ) in terms of c 1 ) and

u (1 ), and use the result and (6.29) in (6.27). After rearrangement, this

gives the following expressions for A and B
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A = x c (c( 1 )(A,B',E) + u(')(A,B,,C))dB, + 0(C 2 )

0

(6.36)
B x + c t + L_ fB {c(1)(A,B,C) - u() (A',B,c)dA' + 01(21

0 ic 0A

In (6.36) c(I ) and u(I ) are given by (6.32) when N = 0, and by (6.34)

when N - 2.

This completes the solution of (6.1) and (6.2) using characteristic

coordinates. The functions c and u are given by (6.27) and (6.32) or

(6.34), while x and t are given by (6.36). Now we show that this solution

equals the solution found using weakly nonlinear geometrical acoustics to

first order in C.

We shall need the following lemma.

Lemma 6.1. Let f(x,e) be a differentiable function of x and integrable

with respect to 8 on [0,-). Define

1
(6.37) f (X) = 3Am {- Tft,)~

and suppose that f(x) is differentiable and

1 T°(6.38) f xx) - lim {T j fx(xO)dei

uniformly in x. Then

(6.39) lim fb f(xx/e)dx = fa f(x)dx

Proof: Let

(6.40) F(x,8) = f(x,e) - f(x) ,

and

(6.41) u(x,C) = f /C F(x,e)dO

Then

(6.42) Ux = F(x,x/) + fx/ F (xe)d .
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We multiply (6.42) by C and integrate with respect to x over [a,b]. This

gives

(6.43) Sa F(x,x/e)dx = e F(bO)d - e f0 F(ae)d6

- e jb dx fx (x,O)d .

Taking the limit of (6.43) as e + 0 and using (6.37), (6.38) and (6.40), it

follows that

(6.44) lim b F(x,x/e)dx = 0
0a

Then (6.39) follows from (6.40) and (6.44). U

In fact, with certain additional assumptions on f(x,e) it is shown in (11]

that as e + 0

fb f(x,x/e)dx = b f(x)dx + 0(e)
a a

We shall also need the following three equations. From (6.16) and (6.36)

x - C0t = s = A + O(E)

(6.45)

x + Co0 t = S+ = B + 0()

Then if h(x,y,O,a) is any continuously differentiable function of x and

y, using (6.45) and expanding in a Taylor series about A = x - C0t,

B = x + c0 t we have

(6.46) h(A,B,A/E,B/e) = h(x-c0 t,x+c 0 t,A/e,B/E) + 0(C)

Finally suppose two continuously differentiable functions w(A,B) and

w(x,t) are related by

w(A,B) = w(x,t) + 0(e)

Then using (6.45) and expanding in Taylor series we have
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x+c t
f w(A,B,)dB, - X-Cot wds + o(E)

(6.47)
x+c t

(A',B)dA' w f-Ct wds_ + O(E)

In (6.47) the integral with respect to s+ is taken keeping 8+ constant and

the integral with respect to s_ is taken keeping $_ constant.

Now we compare the two solutions. We take the plane and spherical cases

separately and consider plane flows first. Using (6.13), (6.22) and (6.33) we

can rewrite the solution (6.32) for c() and u (I ) as

c(ll(A,B) = c(A,B) + C F (0)IA,A/E) + cF0)IB,B/C)0 +0

(6.48)
(1) 2c 0)2c 0

u (A,B) = (AB) + - F (A,A/c) - - F (B,B/C)
In (6.48) u, -I + y-1 -

c(A,B) = p0 (A) + qo(B)

(6.49)

u(A,B) = "L-j {p0 (A) - qo(B)}

Now using (6.12) and (6.46) in (6.49) we have

c(A,B) = o(x,t) + O(E)
(6.50)

u(A,B) = u(x,t) + 0(E)

We use (6.46) and (6.50) in (6.48) to obtain

c (1) (AB) = g(xt) + cF(0 (x-C t,A/C) + coF 0 ) (x+cot,B/c) + O(c)

(6.51) 2c2

u (AB) = u(Xt) +2 F_ (X-C0t,A/c) - 2 Fl0)(x+c0 t,B/E) + 0(E)
U()I,) uxt)+y- + 0y-1 - 0

Using (6.51) in (6.27) and comparing the result with (6.8) and (6.20) we see

that the two solutions for c and u agree to 0(E) provided that

(6.52) A/e = C+/E + 0(c), B/c = /E + 0(c)

To show that (6.52) does hold, we use (6.48) in (6.36), and integrate.

This yields
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A~~x--A-+-F (AAE- -J' F o(B',B'/C)dB'
.. A = ~~~~x-c t - E Y+---'F(0)(A,A/S) B-.AA -S_.. BF0)B,,/)B

0 y-1 + 2 2 y-1 A -

- 0 A (c(AB') + U(A,B')}dB' + O( 2 )

(6.53)

B = x+c t + E +--l F()IB,B/C) B-A _ 3-Y fB F(0)(A,,A,/C)dA,

o - - 2 2 Y-1 A +

B2

+ _ fA {c(A',B) - U(A',B))dB' + 0(C2 )
2c A

Now from (6.22) F (N)(x,O) has zero mean over e, and therefore using
o o

lemma 6.1

fBF (N)(A',A'/C)dA' = 0(E)A +

(6.54)

fj F ()(B',B'/C)dB' - 0(E)
A -

Also using (6.50) and (6.47) with w = c ± u we have

x+c0 t

jB {c(A,B') + u(A,B')}d' = f {+u}.ds 0(E)
A X-C 0t +

(6.55) x+c t

AB { (A',B) - u(A',B)dA' = 0t (c-uds_ + 0(E)

0

We use (6.46), (6.54) and (6.55) in (6.53). This gives
y+1 F(0)(xctA ct x+c0t--2

0 - - 1 FO(X-C t,A/E)c t - If + {-c+ads + 0(E
xot - + 0 0 2c X-Cot +

(6.56)
X+C t

Y+1 (0) t + 0 2
B x+ct + C+ - (x+c t'B/E)c t + c x-ct-

0 1 _ 0 2c0 XC0t

Comparing (6.56) with (6.23), and using (6.5) and (6.24), shows that (6.52) is

true for plane flows. This completes the confimation that the two methods

agree for plane flows.

-35-



Next consider the spherical case. Applying lemma 6.1 to (6.35) we have

P (A,/C, dAP2 (A,e) = co)- Af (A,A/E) +

+ Y 2 1 A f(A')dA- + Ag(A,A/E)} + 0(C)

(6.57)

q~~~ (BBB,: Q(B,C) = co {-0 -)Bf (B,B/C) -

- L.. B i(B')dB' + Bg(B,B/C)1 + 0(E)
2

Integrating (6.57) to obtain P2 and Q2and applying Loemma 6.1 again gives

P (A,C) f..j. A'f(A')dA- + I-- fA i'A"'dA" +2 2 2 2

+ AA'g(A')dA'1 + 0(C)

c
(6.58) Q (A, 0 {(..LI) fB B'i(B')dB- - ()-1 f (B")dB" +~gI 2 2 2

+ fB B'g(B')dB'J + 0(E)

Thus from (6.58)

P 2(A,e) = P 2(A) + 0(E),

(6.59)

Q2 (A,,E) =- Q2 (A) + 0(e),

where from (6.15)

(6.60) d (A) (A) , ! B = q (B)

dA2 P2 dB 2 2

Now using (6.15) and (6.22) we can rewrite (6.57) as

- (2)
P2 (,A/,E)= p2 (A) + c 0F +(A,A/C) + 0(E)P

(6.61)
- (2)

q 2 (B,B/E,E) = q 2 (B) + c 0 F-(B,B/C) + 0(C)

Then we use (6.59) and (6.61) in (6.34) which gives

-36-



2c0 F (2) (2)
c c(A,B) + _+ )(A,A/E) + F (B,B/e)) + 0(E), C =A + B + -'

(6.62)

(1) + 2 2c0 F(2) (2)
u(A,B) + + (AA/-) F (B,B/E)} + 0()

Y-1A+B

In (6.62)

c(A,B) = 2(A) + q2 (B)}A+B 2 2

(6.63)
U(A,B) =p2 2 (A) - q (B) - 2 {P2 (A) _ 2 (B)}

Y-1 A+B 2 2 )-1 2(A+B)

We use (6.46) and (6.14) in (6.63) which leads to (6.50). Then we use

(6.46) and (6.50) in (6.62) and find

(c cC~) (2) c (2)

(1) = t O (F2) (X-Ct,A/E) + F( (x+c t,B/C)) + 0(E)x + 0' 0
(6.64)

(1) c C 2(~ (2)
u = u(Xt) + - {F (XC t,A/C) - F( (X+C 0 t,B/E)} + 0(E)Y-1 X + 0 0

Using (6.64) in (6.27) and comparing the result with (6.8) and (6.20) we see

that the two solutions agree provided (6.52) holds.

To show that (6.52) holds for spherical waves, we use (6.62) in (6.36)

which gives

F (2) (B',B'/E)
A x-c t - Y F (AA/E)log(&+B) 3-y ____B - dB'

0 Y+ _o + Y1 A A+B'

-2--~ j {(A,B') + u(A,B')}dB' + 0(C)
(6.65) A(2)(AA,/)

B =+x+c t E !- F 2 (BB/)log _ + 3-7 FB + dA'
0 Y-1- 2B -1 A A'+B

+ I B [c(A',B) - u(A',B))d' + 0(c)
2c0  A

Now we use (6.46), (6.54) and (6.47) with w = c ± u in (6.65). The

result is
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(2) x+c 0 t

0 Y-i t 0 Xon---- - C 0 t -
A =x-ct-- F+ (X ti'+2 -c

(6.66)

(2) x+c {-u
B - X+Cot - + (X+C t,B/) + foc-uds + O

0x t- -1- (x ctx0ct 2c 0X-C 0t

Comparing (6.66) with (6.23), and using (6.5) and (6.24), shows that (6.52)

holds for spherical flows. Thus, weakly nonlinear geometrical acoustics and

the method of characteristics agree to first order in the wave amplitude £.
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7. Resonance Conditions

Equations for v(x) and a(J)(x,e) were found in section 3 as

solvability conditions for (3.4). In this section we show that there can be

solvability conditions additional to those considered in section 3, and that

the solution derived in section 3 satisfies all these solvability conditions

whenever the resonance condition (2.15) does not hold for distinct j and

k at any x. Even if (2.15) does hold, and there is the possibility of

resonance, the solution derived in section 3 may still be valid and we give

necessary and sufficient conditions for this to be the case.

We abbreviate (3.4) to

m n J i(7.1) A v f(S)

j=1 i=1 .

We have dropped the superscript on v(1) and omit showing any x-dependence

explicitly, because x is effectively constant in (7.1). We shall derive

conditions which f(O) must satisfy if (7.1) has a bounded solution for

v(6).

In fact all we require on v(6) is that

(7.2) v(e) = o(161) as jel + .

Then using (7.2)
Tv(1) (0 (/E,...,(m) /e) = o(1) as e + 0

and the asymptotic expansion (3.2) remains valid when S. is evaluated atiJ

If V(6) satisfies (7.2) then

(7.3) lim {_ fTv O d }= 0
T+cD T 3

That is any derivative of v(O) has zero mean.
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Therefore averaging (7.1) with respect to 0 we find as in section 3

that f(O) has zero mean, which gives (2.4) for the mean ; of v(0)(6)o

Next suppose that there is a vector A = (A ,...,A m ) such that
1

m 
(j)(7.4) X i VO(j  p

j=1

where p = i1..,n) satisfies (2.15)

n M

Denote by L the left null vector of ) p A i  We assume throughout
i1i

this section that (2.1) is strictly hyperbolic, so L is uniquely defined (up

to a scalar factor). Also let
m

(7.5) C = X .0 ,i=i J )

and define the hyperplane SMo) by

(7.6) S(w) = {8 e s? : a = constant)

Then we average (7.1) with respect to 8 over SMO). To do this

introduce coordinates (o,n1,...,M1) in 11m , where the nj depend

linearly on 8. Then using (7.5), (7.1) becomes

m n )v0  n-i m n 3T nk  ) Ci

(7.7) n (J)A(i v + -1 A n 3fk(J)A( k )
j= i1 J i  k=ljr1 i=1 ] i k

Now we average (7.7) over S(O), integrating with respect to n ,...,n-i ,

when the mean of the terms proportional to v is zero from (7.2). Then we

take the scalar product of the result with L, which makes the coefficient of

v zero. Therefore

(7.8) L(f) avS 0

In (7.8) (favS is the average of f over S(O).

(7.9) (f) lim { fT ... f f dn ... dn .
avS rnwT -i 0 0 1 rn-1

Thus (f)avS is a function of 0.
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In general it is possible for there to be many vectors A such that

A(J) A M has a given left null vector L. The set of all such A formsjxii'j j xi

a vector subspace of Rm . Pick a basis {X ,..., I of this space, where

S .), and define a£ and S(a) analagously to (7.5) and

(7.6):
m

J=l
(7.10)

S(a) {8 e Rm a 0 = constant}

Then exactly as before we obtain the solvability condition (7.8). We

obtain one such condition for each subspace S of the kind defined above.

Next we show that the solution (3.6) for v(0 ) always satisfies these

solvability conditions if (2.15) never holds. Using (3.6) in (3.4) and

comparing with (7.1) we obtain

(7.11) -f(x,e) = {A i + A vu °, + Bvi1x, U x. U
1=11

m n A(i) (k)a(k) + (k)A(i)-R(k) (k) + (k)a(k)}
+ {A R a +$ A yR a +Q a }

k=1 i=1 x. xi  uk

m m n (i) (k) (1) (k) (J)
+ I* A R R a a ex. u ej=I k=li=1 'i u

In (7.11) Q(k) is defined by (3.9).

Now we claim that the conditions (7.8) are satisfied for f given by

(7.11), with v satisfying (2.4) and a(j ) satisfying (3.8), if and only if

the nonlinear terms

m j72 m (j) (i) (k) (j) (k) (j) (k) (i) (j) (k) (j) (k)
(7.12) 1 1 {L~ A R R a a e + L A R R a a 6

j=1 k=1 i= x u .+ xi u .

have zero mean over S(O). The reason for this is as follows. The first

three terms in (7.11) proportional to ; sum to zero by (2.4). The terms

-41-



linear in a (k) and the nonlinear term proportional to

(kc) Wk 1 a (k 2
a a. [a ] have zero average over S(o) unless ek is

k k
constant on S(o). If 0 is constant on S(0) then we must have L =Lk

and then the scalar produce of the sum of these terms with L is zero by

(3.8).

. Thus a necessary and sufficient condition for the solution derived in

section 3 to satisfy the solvability conditions (7.8) is that the terms (7.12)

have zero mean over S(O). However, suppose that e, and 6 are not
k

constant or functionally dependent on each other on S(O). Then we can use

TI = e and i2 = 0 as two coordinates on S(O), and the mean of (7.12)

1 j2 kc

over S(O) is clearly zero.

If e* and k  are constant or functionally dependent on each other

then we must have for some cW(x), ck(x) and (P1(x),..., I(x))

(7.13) c e + c 0 a
L=' 1 X

Using (7.10)

m V
(7.14) c.e + cee = I I X~j j k k r=1 1=1 i

Since (7.14) holds for all 6, in particular it follows that

V1 ~ ~c. = £~

(7.15)
V

ck = i X k

But by the definition of Xr, X A (r) has left null vector L for
Ir .r=1 i

= 1,...,v. Therefore if p is defined by (2.15) using (7.15) the matrix

n piA has left null vector L, and (2.16) must hold.
1=1

-42-



This proves that if (2.15) and (2.16) do not hold at any x for

distinct j and k, then the mean of all terms (7.12) over S(M) is zero,

and v and a(j ) satisfy the solvability conditions (7.8). On the other

hand, suppose (2.15) and (2.16) do hold for some pairs {j,k). Then the

solution described in section 2 is valid if and only if for each pair {j,k}

the average of the term (7.12) is zero over the space S(a) corresponding to
n M

the left null vector of L of PiA
i= 1

In section 3 we took a particular form of solution for f and v(0 ) to

(3.3). We have shown that this is sufficient provided that re -e does not

occur. To treat problems involving resonant interactions a more general form

of solution to (3.3) for * and v(0 ) must be used.
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8. Multiple Characteristics

In this section we generalize the results of section 2 to the case of

multiple characteristics for a large class of systems. This class includes

systems derived from a set of conservation laws.

Let us regard the eiconal equation (2.6) as an equation for w , here
x I

we can suppose that x, is a timelike coordinate. Equation (2.6) is an m-th

degree polynomial in *X. We denote its m real roots by
xl

(x,* x2'...' )O Suppose that (2.1) has multiple characteristics. Then V
2 n

of the gj's will be the same. We suppose gj for j =

Therefore we shall take *(J(x) = (I(x) and e E 1 for j = 1,....

We assume that the multiplicity V does not change, and we also assume that

there is no resonance i.e. that (2.15) never holds.

We use (3.2) in (3.1) and use the result in (2.1). Equating to zero the

coefficient of c0 we obtain (3.3). Setting each term in the sum over m

equal to zero gives (3.5). We take as solutions to the eiconal equation
(6) (1)(x (v+l) (a)

(2.6), (x), * (x),..., (x). To simplify notation we suppose that

the other families of characteristics are simple. This does not affect our

final results which are the same whether or not there are other multiple

characteristics. In fact, several of the 0(J)s can correspond to the same

multiple characteristic.

Once the *(J) are determined v(0 ) satisfies (3.5). The matrixI n
A(IIkli) has a null space of dimension V. We denote byi-i xi  u

(R(),...,R (V )  a basis of the space of right null vectors, and by

L ),...,L ( )}  a basis of the space of left null vectors. We write v( 0 )

as

(8.1) v°) (x,e) = ;(x) + j a ()x,01)R + + m(x,O)R
j-V+1

Then v(0 ) clearly satisfies (3.5).
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The only difference between (8.1) and (3.6) is that in (8.1) the first

(i)V a all depend on the same fast variable 8

Equating the coefficient of C to zero we obtain

m n n i) °)+s
I I A {Ai); + A(i); u(O)} + Bk=1 i=1 x i ek i x i  u x i  u

m n(8.2) { (al(k) A MR (k ) + a (k)#lW Ail;R (k)) + al(k) 
(k l)

m (k)a(L)t) i Ck) ()

k-i L=1 8£ - xi u

In (8.2) 8. is taken equal to 1 for j I ....,V. Now equation (2.4) for

;(x) follows from (8.2) by averaging it over e provided that the mean of

the nonlinear terms proportional to a()ak) is zero.

In fact this is not always the case when there are multiple

characteristics. The mean of a(J)(x e )a(k)(x,8I) is not necessarily zero
'1 0 1(J Wwhen j # k, and 1 4 J, k 4 V. In general the terms [a a Ik) ̂  couple

together the equations for the mean ;(x) and the amplitudes a (x,).

However we shall show that the mean of the nonlinear terms is zero for

systems which satisfy the following condition.

Condition 8.1. For all 1 4 J, k 4 v:

(8.3) (1)Ai)R(j)R(k) = ,( )Ai)R(k)RlJ)

i xi ui= x. u

If there are other multiple characteristics they also satisfy the analagous

equation to (8.3).

From (4.14) condition 8.1 is always satisfied by any system which is

derived from a set of conservation laws. We now show that the mean of the

terms a (J)a9  is zero. Trouble can only arise when 1 4 J, k 4 V so that
k

both a(i) and a k) depend on 01.
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If j = k then
a(J) (j) 1 ( (j) 2

a = 2 [a

Thus a(J)a( j )  is an exact derivative and has zero mean, since a(j )  is a

01

bounded function of 01 . If j # k we consider the terms proportional to

(j) (k) (k) (j)a a k and a a .j )  From (8.2) these are
1 1

n *(1)A(i) (j)R(() ( k()n (1 M (k)()(k) (j)
(8.4) 1 R( + (1)A(i) R(k) R a a0i= xi u i= xi u1

Using (8.3) we rewrite (8.4) as an exact derivative

n

(8.5) ) *(1 )A (i)R(J)R(k) (a (j ) (k)
i= X. u

Therefore (8.4) averages to zero. This shows that v(x) satisfies (2.4).

To obtain equations satisfied by a(j ) for j = 1,...,V we average

(8.2) over (9 ,...,O ) and take the scalar product of the resultingV+1 m

equation with L (p)(p - 1,...,V). Then we find the same equations as those

obtained by Choquet-Bruhat [1]:

L(n L is(J)a(J) + V V n L(p) (1) Ai) (k) (J) a(k)a J)

j=1 i=1 xi J-1 k=1 ARa
(8.6)

V n J ) V ( ) ( ) ( )

+ I I L(P)O(l)A(i);RlJ)alJ) + IL)J a ( )J-1 i=I x.i u 61 + j=0 1

We have the following lemma:

Lemma 8.1. There are scalar functions ci(x), for i = 1,...,n, such that

for all j = 1,...,v and p = 1,...,V:

L(P)A(i)R(J) = ciL(P)R(J}

The proof of lemma 8.1 follows that of Lewis [12] almost exactly.
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Using lemma 8.1 in (8.6) we find

(8.7) -  + a (j) L(P)(1)A()s(k)R(J)a(k)a(J)
J=1 i-I j=1 k-1i u 1

V n

+ 1 L (p) (1) ACi)-RlJ)a(j) + V L(p)Q(j)a(j) 0
I. I L i A y ae I Ji L a =0

(p =

In equation (8.7), 0 is defined by

dxi
(8.8) -- ci(x) •

Equation (8.7) is a system of quasi-linear equations for the V

scalars a(1 )  in two independent variables a and 81.

Equation (8.7) reduces to a system of ordinary differential equations in

the special case that there are A(x) e R and P(x) e R such that

n (P) (1) Ai) (k) C(p)(J )

I xi u R ALR jk

(8.9)
n (() (1 i-()j)
nL(Pl0ll)AlilyR(J) = R

xi  u
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Appendix

In this appendix we specialize the results of section 2 to the gas

dynamics equations

Pt + div(Pu) = 0

(A.1) pu + pu.Vu + Vp =0

p = p¥

Equations (A.1) are the equations of motion for the isentropic flow of a

compressible, inviscid, ideal gas. In (A.1) p is the gas density, p the

pressure and u the velocity of the gas. The quantities K and Y are

constants.

The weakly nonlinear geometrical acoustics solution (2.2) to (A.1) for

x and u in R3 is

(A.2) = [ + £[ + al()x,t• (j lC R (j (xt)
tIu (x~t)] L (x't j=1

ms (k,l) (k (k,1) (k,2) Wk (k,2)
+ C I {a (x,t,( /C)R (x,t) + a (x,t, /C)R (x,t))

k=1
+ 0(

2 2

In (A.2) (P ,U) is any exact solution to (A.1). The mean value of the

perturbation in (P,u) about (p0 ,U) is (cp,£u). The sum over j

represents a superposition of high frequency sound waves, and the sum over

k is a superposition of high frequency vorticity waves.

The means (p,u) satisfy (2.4) which gives the acoustics equations

Pt + div(P 0U + PU) = 0

(A.3)
POuT + V( c2) + T + Po-VU
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In (A.3) c0  is the linearized sound speed

(A.4) co-O= P-
0

and 1 is the derivative taken along the streamlines of Ua a

(A.5) a a+ u.V

The eiconal equation (2.6) for (A.1) when x e R1 is

(A.6) (2 - c 2IV1 2 ), nl. 0
T 0OT

The phase functions *(J) and * (J) in (A.2) satisfy

(A.7) (05) )2 _ c2iV()12 = 0  (k) = 0
T' 0 T

We consider the sound waves (which depend on *() and the vorticity waves
(which depend on * (k)) separately.

For the sound waves the rays (2.7) corresponding to ( are given by

(A.8) at = U .(I) 0 = U T  - 11jc 0V Vdo. j T do.

and the vector R(J ) is given in terms of *(J by

-2.(j2

(A.9) R(j ) = A.I

The scalars V j(x,t) and X (x,t) in (A.8) and (A.9) are arbitrary functions

which may be chosen in whatever way is convenient.

The amplitude a ()(x,t,(J) /C) of the jth sound wave is given by

(2.9). For (A.1) Ej(sio ) is

(A.10) Y-1 [(j5 div U - c h0"vf(J))1 ds0A1)Ej  x s 2 2 #T 2p 0  1

The integral in (A.10) is taken along the rays (A.8). The first term in the

integrand gives the change in the wave amplitude due to changes in the ray

geometry. The second two terms in the integrand give the change in the wave

amplitude due to inhomogeneities in the zeroth order flow P = P0 u = U.
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The modified phase function . in (2.9) is defined implicitly by (2.11)

which becomes

(j) fj (j) 3 -2= (  
- £ '-_' F( f O /.(( ) c E. .ds!

2 Fj j0j SO jT 0 j j

(A.11)
Sj~ (J)'V (j  d + E 

Y Is.() 1  sC si j)u ()P s'+ -- f(,(j))2 P P1 ds'

s °  T 2j j 2 s T 0 j

If shocks form they are fitted into the solution using (2.13).

The phase function *(k) for the vorticity waves corres,)onds to a

characteristic of multiplicity n - 1 when x e Rn . For three-dimensional

flows the characteristic has multiplicity two. Therefore as explained in

section 8 we obtain two null vectors R(kl) and R (k ,2) for 4# (k) and two

amplitudes a(k 'l) and a(k '2 ) which are coupled together. The equations

satisfied by a(k 'l) and a(k '2 ) happen to be linear for (A.1).

The null vectors R(kl) and R'(k 2 ) are given in terms of (k) by

0 0

R k,2) = (k ,2 ) 0(A.12) R~1 X k 2 R kkk

_ (k)I  (k)
Xl 1 x 3

0 (k)

In (A.12) )k(x,t) is an arbitrary scalar. To put the equations for
k

a (k,1) and a(k, 2 ) in their simplest form it is convenient to let

w(k) '(k)0w I  0
1 x 2
(k) (k,1) (k) (k,2) (k)
w a +'P + a(A.13) w2 k x1 x3

(k) 0 (k)
w3  L 0 x2 .
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Then w(k) (xt, /(k)e) is a velocity vector orthogonal to V*(k) and

satisfies
(1 wk )  .(k)w(k) w(k). VU - V*M.(k) w (k).* VU (k) = 0

(A.14) w +k -*V (k) +k (k V* (k 1~ 2

We solve (A.4) for w(k)(x,t,G) and evaluate a at *(k) /. When U is

(k) (k)

independent 3f x (A.14) gives three uncoupled equations for w1  ,w 2  and

(k)
w3W3•

We may want to use the local sound speed c(x,t) as a dependent variable

instead of p(x,t). They are related by

(A.15) c2  KYP Y- 1

Then we seek a solution

"F 0(x,t) c (x,t)

= + S + C a J) ltlj) /5)R (J)lx,t)
j=1

(A.16) iuj J (xt

+ [a(kl) ( (k) /)R(k,1) + a(k,2) (xjt,(k) /)R(k,2) } + 0( 2

In (.16)k= 1

In (A.16) c = co , u = U is an exact solution of the gas dynamics

equations. The means c and u satisfy

- Y-1---Y-l-

c + Y-1 C div u + cdiv U + uVc 0
(A.17) T 2 0 20

- 2 V(c ) + -VU 0
uT Y1 0  .V =

The R (j ) in (A.16) are given by

(A.18) R =j Xj(1~ 201

((j)where A .(x,t) is an arbitrary scalar* The remaining equations are exactly

as before: (J) satisfies (A.7), a(j ) is found from (2.9), (A.10) and
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(A.11) with y o /c 0 , (k) satisfies (A.7), R(k, 1) and R(k,2 ) are

given by (A.12) and w(k) satisfies (A.14).

The equations for plane flow (x e R2 ) are obtained from those above by

suppressing the x3-dependence and setting a(k,2 ) = 0. The equations for one

dimensional flow follow by suppressing the x2 and x3-dependence and

setting a(kgl) = a(k,2 ) 0.
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